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We investigate the process of unsteady-state ultrafiltration with gelation under laminar flow conditions in a 

pipe filter with nonideal selectivity of its membrane. 

As a promising method for cleaning, separation, and concentration of dissolved or disperse particles, 

ultrafiltration has found wide application in the food, pharmaceutical, textile, metal-working, and electronic 

industries and in biology and medicine [1 ]. Hollow-fiber and pipe membrane apparatuses have come into 

widespread use. 

The process of ultrafiltration is accompanied by the phenomenon of concentration polarization, which 

occurs in a pre-gei regime in hollow-fiber filters and in a gel regime in pipe filters [2 l. 

To describe concentration polarization, the literature usually resorts to an integral method [3, 4 ], whose 

drawbacks are discussed in [5 l. In [6 1, using a semi-integral method [5 1, a description is given for concentration 

polarization in axisymmetric membrane elements (hollow fibers and pipes) in a pre-gel regime. 

Below we consider the gel regime of polarization in continuous-flow laminar ultrafiltration with nonideal 

selectivity of the membrane in a pipe filter. 

With allowance for gelation, we obtain the velocity distribution in a cylindrical channel. We assume that 

the flow at the channel inlet is fully developed. The flow rate of the fluid through the channel cross section con- 

siderably exceeds the flow leaving through the membrane, and the thickness of the gel layer is much smaller than 

the channel radius. Then the equations of motion and continuity take the form 

A 

Urr + l l - - U r ~  r -~Pz, (1) 

P r = 0 ,  

under the following boundary conditions: 

(2) 

A A 

^ vr (3) 
v r +  - , 4 .  

r 

u = 0 ,  v =  V 6 ( r = R - 6 ) ;  (4) 

A 

v = 0 ,  U r = 0  ( r = 0 ) .  (5) 

From Eq. (2) it follows that p = p(z). 

Integrating Eq. (1) with allowance for the first boundary condition (4), we obtain 
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The equation of continuity yields 

Hence 

.. u = - - - p ~  (R _ . (6) 

A r 
v = Pz  " (7) 

16/~ Oz 

^ R 3 0 P'z 1 - -  (8 )  
v ~ -  16~ 0z 

The mean flow rate at the channel inlet with z -- 0 is given by the expression 

R 2 ( O p )  (9) 
~0 = ~ - ~ • 

Integrating Eq. (8) with account for relation (9) and substituting the result into Eq. (6), we obtain an expression 

for the longitudinal velocity component: 

.. 2 ) /  2) 
u_ - ( , , y - ; .  

R(I 
(1o) 

Now, we consider the equation of convective diffusion. It is taken into account that in ultrafiltration the 

thickness of the diffusive boundary layer A is much smaller than the pipe radius R. Introducing the new variable 

y = R - r and retaining the principal terms, we obtain an equation of convective diffusion, which is written in a 

conservative form (here and below we will operate with the dimensionless quantities u, v, Vb, r/, 4): 

0 ( O -  1) + Ou(O- 1) Ov(O- 1) _ 1 0 2 0  (11) 
2 

Or 04 Or/ Pe 0rl 

Equation (1 1) describes the pre-gel and gel regimes of polarization but under  d i f ferent  bounda ry  

conditions. The first regime exists from the channel inlet up to a certain point ~t, which is called the gelation point, 

where the concentration on the membrane attains the concentration of gelation Og. After the gelation point 

downstream the second regime of polarization is realized. As noted above, the pre-gel regime was analyzed in [6 ]. 

Now, we consider the gel regime. 

The boundary conditions after the gelation point, 4 > 41, take the form 

u[,t= ~ = 0 ,  v[ ,7= 6 = V 6 ,  (12) 

1 ~ ,  (13) 

Ol,1= ^ = 1 ,  O[,7=,~ = Og. 

We relate the decrease in the permeability of the membrane to the thickness of the gel layer: 

V 
V a - l + / , : ,  ~ 

(14) 

(IS) 
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Now we integrate the equation of convective diffusion (11) across the diffusive boundary  layer using conditions 
(12)-(14) and the requirement that O~ = 0 at r/-- A. Then for ~ > ~1 we have 

A 08 0 A 
__O f ( O - -  l ) d r / + ( 2 O g -  1)-b-7 + ~  f u ( O -  l ) d r / =  V a F g ,  (16) 
Or 6 6 

where Fg = 1 - (1 - So)Og. At the gelation point ~ = ~l itself the condition O = Og is satisfied. 

We consider Eq. (11) under two limiting conditions: in a highly nonstationary regime and in a stat ionary 

regime. For the stationary case, with allowance for the distribution of velocities (7), (8), (10) (since the diffusive- 
layer thickness is small, we can restrict ourselves to the first terms in the distribution of velocities (7), (10)) we 
obtain for ~ > ~1 the relation 

~ ) dO dO 1 020 (17) 
4 l - 2 V ~ l - 2 f  V~d~ ( r / - 6 )  = V6 + - - - - .  

~1 ) O~ Or/ Pe 0zr/ 

In the immediate vicinity of the membrane,  i.e., for r / ~  6, the following relation is valid: 

I/6 O0 + ~ 02_____00 = 0 .  (18) 

Oq Pe O2r/ 

Double integration of this relation and application of boundary condition (13) allow us to find that 

O = Og [1 - So (1 - exp ( -  Pe V6 (r/ - 6)))1. 

From the physical considerations underlying boundary- layer  theory and Eq. (18), the distribution of 

concentrations for ~ >_ ~t can be represented in the form 

O = 

Og , 

Og 11 - So (1 - exp ( -  Pe Va (r/ - 6))) I ,  
1,  

O < r / _ _ _ 6 ,  
c~_<r/_< A,  
A_<r/_< 1,  

(19) 

where V6(~) is a function as yet unknown. To calculate this function, we use integral condition (16). It should be 
noted preliminarily that Eq. (19) yields 

1 A - 6 - In SOO~ (20) 
PeV 6 1 - (1 - So) Og" 

Then, substituting the distribution of velocities (17) and concentrations (19) into Eq. (16) and performing single 

integration over ~, we find for ~ >__ ~1 

4 1 -- 2V¢1 - 2 f V6d ¢ Xg/(PeV6) 2 = f Fg V6d ¢ + f rwVd~ 1, (21) 
~i 41 0 

where 

2 1 ( 
Yg = Og -- Fg In ~ g  - ~ Fg In Fg ) (22) 

Then we determine the position of the gelation point on the membrane ~1: 
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~1 4 zg ( l  - 2 v ~ l )  
f rwVa~ = 
0 (Per )  2 

(23) 

Substituting two limiting cases into the left-hand side of Eq. (23) instead of Ow: 1) O w = Og; 2) linear behavior 
O w = I + V~(Og - I ) /V~ 1, and performing integration, we obtain the estimate 

4 Y~ V~l 8 Y~ 
>__ >__ 

(PeV) 2 Fg 1 - 2V~I (to + Fg) (PeV) 2" 
(24) 

We resolve Eq. (21) for the integral and then perform the differentiation with respect to ~ with subsequent  
integration with the boundary condition V~ = V at ~ = ~1. This yields an equation that describes the regime of gel 
polarization in a cylindrical channel: 

- / ( ~ -  F) ( I + F ) [  arctan V3 F---i'7~ ] 1 2 V~ _ V,~ (1 + F) V~ + F 1 / 2 VF 1 / 2 arctan , (25) 
1 - 2V~z V 

where F = 4 ~ g / F g ( P e V )  2. When V~I --, 0, we can obtain a simpler solution: 

V,~ [ 3 r~ (PeV)2] - 1 / 3  
-V  = 1 + ~ (V¢ - V~l) Zg ) ' (26) 

which for V ~ / V ~  1 >> 1 can be transformed to yield 

(27) 
Va ~ Fg pe2s t 

The velocity V (the resistance of the membrane) does not enter  into formula (27). This means that the performance 
of the filter ceases to depend on the pressure (the resistance of the gel layer considerably exceeds the resistance 

of the membrane,  and an increase in pressure is compensated by an increase in the resistance of the gel layer).  
Thus,  the pattern of laminar continuous-flow ultrafiltration in a cylindrical channel can be divided into 

three regions. In the first region, which extends from the channel inlet to the gelation point (determined by Eq. 

(23)), the main resistance to t ransmembrane flow is offered by the membrane,  and the filtration velocity V is 

directly proportional to the pressure applied [6 ]. In the second region, which extends from the gelation point and 
farther downstream, the hydraulic resistances of the membrane and the gel layer will be of the same order. Here 

the filtration velocity V,s depends nonlinearly on the pressure (Eq. (25)) (the pressure is associated with 1,'). In the 
third region, the hydraulic resistance of the gel layer considerably exceeds the resistance of the membrane,  the 
filtration velocitty ceases to depend on the initial pressure, and the entire velocity distribution of filtration from 

the above two regions is reduced to a single dependence (Eq. (27)). 
We consider the unsteady-state  regime of ultrafiltration. For this case we have the integral condition 

0 A 0c3 = FgVc~, r > T I (28) 0--7 f ( O -  l) dr/ + ( 2 O g -  1 ) ~ -  _ , 
6 

where rl is the time of onset of gelation. 

We relate the decrease in the permeability of the membrane to the gel-layer thickness by relation (15). 
We prescribe the nonstationary distribution of concentration from the solution of the stat ionary problem. 

Then, substituting formula (19) into Eq. (28) with allowance for the fact that Va and c~ depend on the time and 
there is the obvious relationship 
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Fig. 1. Compar i son  between dependences  of exper imenta l  values of a 

(mg/m 2) (the amount of protein in a polarized layer) and ones calculated by 

integral and semi-integral methods on the filtration velocity V q~m/sec) for 

various values of the Re number: points, experiment; 1, integral method; 2, 

semi-integral method. 

a~ v ov  a 

Or kV~a 0r 
(29) 

we obtain 

L+ 1 v x~ (2og-  1) 
PeV F------~ + k 

- I / 3  

, ~ ' > T  1 , 
(30) 

where 

O g -  F g l n - ~ $  - 1 = X  r .  

Now, we estimate the time T s that is required for attaining steady-state ultrafiltration in a cylindrical channel with 

gelation. Assuming that the quantities V~l are small, we equate the right-hand sides of Eqs. (30) and  (26): 

1[( 3 F  pe 2 2J3 ] (20  
Vr s = Vr I + ~  1 + ~  ( v ~ -  v~l) xg ) - I ~ + eeVrg " 

For distances from the channel inlet for which V ~ / V ~ I  >> 1, we obtain 

We compare the theoretical results obtained, which describe ultrafiltration in the pre-gel and  gel regimes 

in an axisymmetric filter, with experimental data. Figure 1 illustrates experimental data  [7] on determination of 

the amount of protein a in a polarization layer for the pre-gel regime of ultrafiltration in a hollow-fiber filter. From 

this figure it follows that the results obtained by a semi-integral method [6 ] describe the experimental data much 

better than the relations determined by an integral method [7 ]. 

And, finally, we compare experimental values of the limiting velocity of ultrafiltration V a for the gel regime 

of polarization with ones predicted by a semi-integral  method (Eq. (27)). The au thors  fai led to discover 

experimental data on ultrafiltration in a pipe filter in a gel polarization regime. There are results of experiments 

[8] on ultrafiltration in a gel regime in a plane channel. A comparison of these data with results of theoretical 

investigations carried out on the basis of the semi-integral method in [9 ] for a plane channel is presented in Table 
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TABLE 1. Comparison of Experimental Values of the Limiting Filtration Velocity V,~ with Ones Calculated by a 

Scmi-lntegral Method 

Volumetric 
c 0, g/m 3 

concentration 

1.87 

1.80 

1.78 

1.76 

1.74 

Flow velocity 
Ko, cm/sec 

Limiting veiocitty of filtration V,~, cm/min 

experiment 

5.8 

11.5 

17.3 

23.0 

34.5 

0.018 

0.022 

0.025 

0.028 

0.039 

theory 

0.020 

0.025 

0.030 

0.033 

0.038 

1; good agreement between them is evident. This allows one to be sure that the formulas obtained above for the 

gel regime of polarization in a pipe filter will give an adequate description of experimental results. 

The work was carried out under support from the Fund for Fundamental Research of the Republic of 

Belarus, grant T94-020 of 27.01.95. 

N O T A T I O N  

A - -  

= x / R ;  r 1 = y / R ,  dimensionless longitudinal and transverse coordinates; u = u / u  o, v -- v /~  0, dimensionless 

components of the velocity vector; R, pipe radius; uo, average velocity at the channel inlet; Re -- -~oR/v ,  Reynolds 

number; v, kinematic-viscosity coefficient; Pe -- -~oR/D,  diffusion Peclet number; D, diffusion coefficient; O = 

c / c  o, dimensionless concentration of the substance; c o, concentration of the dissolved substance at the channel 

inlet; Og, dimensionless concentration oi the dissolved substance in the gel layer; O w, dimensionless concentration 

of the dissolved substance on the membrane; V-- V/-ff o, transmembrane velocity; Va, transmembrane velocity with 

gelation; A, dimensionless width of the diffusive boundary layer; di, dimensionless width of the gel layer; ~o, 

selectivity of the membrane;/z, dynamic-viscosity coefficient. 
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